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How much do you remember from soil mechanics?
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In-situ stress
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Content
• Basic concepts of continuum mechanics: REV

• Stress and strain tensors, effective stress concept 

• Stress paths

• Laboratory testing: Triaxial tests
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Basic concepts of 
continuum mechanics
REV: REPRESENTATIVE ELEMENTARY VOLUME
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Basic concepts of Continuum mechanics
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• Heterogeneity of porous media at different 

scales

• Interpretation of the mechanics of porous 

media at macroscopic scale

• REV: Representative Elementary Volume

o Smallest volume over which the value 

measured of a certain property is 

considered as representative of the 

whole
Opalinus Clay at different scales (Nagra 2002b)
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Basic concepts of Continuum mechanics
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• Macroscopic homogeneity 

  vs. 

Microscopic heterogeneity 

• REV: Representative Elementary Volume

Sample dimensions > 10 x largest particles

REV
Large scale

Elementary 
particle scale
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Basic concepts of Continuum mechanics
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• Microscopic heterogeneity is neglected in the Representative Elementary Volume (REV)

• Size of REV depends on the material and on the considered problem.

REV

n

r
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Basic concepts of Continuum mechanics
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• REV allows to use Continuum Mechanics for geomaterials

• Geomechanical properties (stiffness, strength, permeability, …) depend on the REV size.

n

r

REV soil 1

REV soil 2

REV soil
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Stress and strain tensors
STRESS AND STRAIN VARIABLES, INVARIANTS AND TENSORS

EFFECTIVE STRESS CONCEPT
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Stress
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Sign convention: Compressive stress is positive

𝑏𝑏

𝑡𝑡 𝑛𝑛

Δ𝑓𝑓

Δ𝑆𝑆

𝑉𝑉
𝜎⃗𝜎 = lim

Δ𝑆𝑆 →0
Δ𝑓𝑓 
Δ𝑆𝑆 

𝜎𝜎
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Tensor definitions

G e o m e c h a n i c s –  Fa l l  2 0 24 1 2

• Tensor: mathematical entities in the form of ordered arrays or matrices.

• Tensor of rank n in a m dimensional space has mn components.

• Here, we are dealing with Cartesian coordinates therefore m=3
• Tensors of zero rank: Scalars 1 component 
• Tensors of first rank: Vectors 3 components
• Tensors of second rank: 9 components

• Among other uses, tensors of second rank serve to describe properties of materials 
that differ from one direction to another, called anisotropic.

• Invariant of a Tensor is a quantity that does not change with coordinate system.
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Stress tensor
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[ ]
11 12 13 x xy xz

21 22 23 yx y yz

31 23 33 zx zy z

σ σ σ σ τ τ
σ σ σ σ τ σ τ

σ σ σ τ τ σ

  
  = =   
     

ijσ
Direction of stress component

Direction of the surface normal upon which the stress acts

: Stress on i plane along j direction

• Stress tensor is a second order tensor with a matrix 
representation
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Stress tensor
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• Stress tensor is symmetric due to balance of angular momentum.

ij jiσ σ=

• The diagonal stresses are referred to as the normal stresses whereas 
the off-diagonal stresses are referred to as the shear stresses

[ ]
11 12 13 x xy xz

22 23 y yz

33 z

σ σ σ σ τ τ
σ σ σ σ τ

(sym) σ (sym) σ

   
   = =   
      
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Principal stresses
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• For a given stress tensor, there is a set of planes on which the stress vectors are normal to 
them. On these planes, the shear stresses are zero. These are principal planes and stresses 
normal to them are principal stresses.

• It can be shown that the three principal stresses are 
the characteristic values of stress tensor obtained 
from characteristic equation:

11 12 13

12 22 23

13 23 33

σ σ σ
σ σ σ 0
σ σ σ

λ
λ

λ

−
− =

−

[ ]
1

2

3

σ 0 0
σ 0 σ 0

0 0 σ

 
 =  
  

Image www.rockmechs.com
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The effective stress concept
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• The REV includes a solid, a liquid and a gas phase

Gas (air)
Vg, Mg

Liquid (water)
Vl, Ml

Solid (soil)
Vs, Ms

Multi-phase description Single-phase description

Continuum
V, M
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Effective stress for saturated media
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Effective stressEf
fe

ct
iv

e 
st

re
ss

Total stress

To
ta

l s
tr

es
s

pw

Equivalent 
continuum

• Terzaghi’s effective stress (1936)

𝜎𝜎𝑖𝑖𝑖𝑖′ = 𝜎𝜎𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑤𝑤𝛿𝛿𝑖𝑖𝑖𝑖

Total stress Pore water 
pressure

• Assumptions

 Fully saturated granular material

 Incompressible fluid and grains

• All measurable effects produced by a change 
in the state of stress are due to a change in 
the effective stress (Terzaghi, 1936)
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Effective stress for saturated media
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Total stress

To
ta

l s
tr

es
s

pw

• Terzaghi’s effective stress (1936)

𝜎𝜎𝑖𝑖𝑖𝑖′ = 𝜎𝜎𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑤𝑤𝛿𝛿𝑖𝑖𝑖𝑖

• Extended effective stress

𝜎𝜎𝑖𝑖𝑖𝑖′ = 𝜎𝜎𝑖𝑖𝑖𝑖 − 𝛼𝛼 𝑝𝑝𝑤𝑤𝛿𝛿𝑖𝑖𝑖𝑖

𝛼𝛼 = 1 − 𝐾𝐾𝑆𝑆𝑆𝑆
𝐾𝐾𝑆𝑆

       Biot’s coefficient

𝑲𝑲𝑺𝑺𝑺𝑺: bulk modulus of the dry material

𝑲𝑲𝑺𝑺: bulk modulus of the solid particles

Soils: 𝑲𝑲𝑺𝑺𝑺𝑺 ≪ 𝐊𝐊𝐒𝐒 and 𝜶𝜶 = 𝟏𝟏 
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Tensorial form of effective stress
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• Terzaghi’s effective stress:
wpσ σ′ = −

• And in tensorial form ij ij w ijpσ σ δ′ = −

11 12 13 11 12 13

12 22 23 12 22 23

13 23 33 13 23 33

σ σ σ σ σ σ 0 0
σ σ σ σ σ σ 0 0
σ σ σ σ σ σ 0 0

w

w

w

p
p

p

′ ′ ′     
     ′ ′ ′ = −     

′ ′ ′          

Kronecker Delta
0
1ij

i j
i j

δ
≠

=  =
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Stress variables
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Mean total stress  𝑝𝑝 = 𝜎𝜎1+𝜎𝜎2+𝜎𝜎3
3

Mean effective stress  𝑝𝑝′ = 𝜎𝜎1′+𝜎𝜎2′+𝜎𝜎3′

3

Deviatoric stress  𝑞𝑞 = 𝜎𝜎1 − 𝜎𝜎3

Maximum shear stress   𝑡𝑡 = 𝜎𝜎1−𝜎𝜎3
2

Mean stress    𝑠𝑠 = 𝜎𝜎1+𝜎𝜎3
2

𝜎𝜎1𝜎𝜎3
P 𝜎𝜎𝑛𝑛

𝜏𝜏

𝜎𝜎2

𝜎𝜎3

𝜎𝜎1

𝛼𝛼

𝜎𝜎𝑛𝑛
𝜏𝜏𝑛𝑛

𝜏𝜏

𝜎𝜎1𝜎𝜎3
P 𝜎𝜎𝑛𝑛

𝜎𝜎𝑛𝑛

𝛼𝛼

𝜏𝜏𝑛𝑛

𝜎𝜎1𝜎𝜎3
P 𝜎𝜎𝑛𝑛

𝑠𝑠

𝑡𝑡

45°

𝜏𝜏

L e c t u r e  2  –  B A S I C  C O N C E P T S



Stress invariants
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• The stress tensor matrix representation depends on the system of coordinates we choose, 
while the tensor itself does not change.

• When studying deformations, we typically change the system of coordinates.

• We need to find some functions of stress tensor that do not change with the choice of 
coordinate: invariants of stress tensor.
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Stress invariants
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• 𝑱𝑱𝟏𝟏: First invariant of the principal stress tensor 𝜎𝜎𝑖𝑖𝑖𝑖 (its trace)

𝐽𝐽1 = 𝑡𝑡𝑡𝑡 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜎𝜎1 + 𝜎𝜎2 + 𝜎𝜎3

• 𝑱𝑱𝟐𝟐𝟐𝟐: Second invariant of the deviatoric stress tensor 𝑠𝑠𝑖𝑖𝑖𝑖

𝐽𝐽2𝐷𝐷 =
1
2
𝑡𝑡𝑡𝑡 𝑠𝑠𝑖𝑖𝑖𝑖2 =

1
6

(𝜎𝜎1 − 𝜎𝜎2)2+(𝜎𝜎2 − 𝜎𝜎3)2+(𝜎𝜎1 − 𝜎𝜎3)2

• 𝑱𝑱𝟑𝟑: Third invariant of the principal stress tensor 𝜎𝜎𝑖𝑖𝑖𝑖 (its determinant)

𝐽𝐽3 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜎𝜎1𝜎𝜎2𝜎𝜎3

𝑝𝑝 𝐼𝐼 =
𝑝𝑝 0 0
0 𝑝𝑝 0
0 0 𝑝𝑝

Isotropic stress tensor

Image www.rockmechs.com

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝑝𝑝𝛿𝛿𝑖𝑖𝑖𝑖 + sij 𝑠𝑠 =
𝜎𝜎11 − 𝑝𝑝 𝜎𝜎12 𝜎𝜎13
𝜎𝜎21 𝜎𝜎22 − 𝑝𝑝 𝜎𝜎23
𝜎𝜎31 𝜎𝜎32 𝜎𝜎33 − 𝑝𝑝

Deviatoric stress tensor
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Triaxial stress conditions
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σa

σr σr

Soil
Specimen

x y

z

= σ1

= σ3= σ2

Applied stresses
σ1: Maximum principal stress

σ2: Intermediate principal stress

σ3: Minimum principal stress

Cylindrical tested specimen: h/d=2

Axisymmetric conditions
σ1 = σa Axial stress

σ2 = σ3 = σr Radial stress  

(confining stress or cell pressure)
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Triaxial stress conditions
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σa

σr σr

Soil
Specimen

x y

z

= σ1

= σ3= σ2

Mean (total) stress

𝑝𝑝′ =
𝜎𝜎1′ + 𝜎𝜎2′ + 𝜎𝜎3′

3
=
𝜎𝜎′𝑎𝑎 + 2𝜎𝜎′𝑟𝑟

3
=
𝐽𝐽1′
3

𝑝𝑝 =
𝜎𝜎1 + 𝜎𝜎2 + 𝜎𝜎3

3
=
𝜎𝜎𝑎𝑎 + 2𝜎𝜎𝑟𝑟

3
=
𝐽𝐽1
3

𝑞𝑞 = 𝜎𝜎1 − 𝜎𝜎3 = 𝜎𝜎𝑎𝑎 − 𝜎𝜎𝑟𝑟 = 3𝐽𝐽2𝐷𝐷

Deviatoric stress:

Mean effective stress

𝜏𝜏 =
𝜎𝜎𝑎𝑎 − 𝜎𝜎𝑟𝑟

2

Maximum shear stress:
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Strain tensor
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• The strain tensor is a symmetric tensor used to quantify the strain of an object undergoing a 
small 3-dimensional deformation 

– Diagonal components: relative change in length in i direction  
– Other components: shear strains, i.e., half the variation of the right angle 























⋅

⋅⋅

=















=

z

yzy

xzxyx

33

2322

131211

ij

ε(sym)

γ
2
1ε

γ
2
1γ

2
1ε

ε(sym)
εε
εεε

ε

𝛾𝛾

𝜏𝜏

𝜏𝜏
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The strain variables and the sign convention
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Strain variables

Sign convention in geomechanics

Volumetric strain      𝜀𝜀𝑣𝑣 = 𝜀𝜀1 + 𝜀𝜀2 + 𝜀𝜀3

• Compressive forces and 
compressive stresses are positive

∆𝐿𝐿 = 𝐿𝐿𝑓𝑓 − 𝐿𝐿𝑖𝑖

∆𝑉𝑉 = 𝑉𝑉𝑓𝑓 − 𝑉𝑉𝑖𝑖

𝜀𝜀𝑖𝑖 = −
∆𝐿𝐿
𝐿𝐿𝑖𝑖

𝜀𝜀𝑣𝑣 = −
∆𝑉𝑉
𝑉𝑉𝑖𝑖

• Compressive strains are positive

𝑉𝑉𝑓𝑓 < 𝑉𝑉𝑖𝑖
∆𝑉𝑉 = 𝑉𝑉𝑓𝑓 − 𝑉𝑉𝑖𝑖 < 0

𝜀𝜀𝑣𝑣 = −
∆𝑉𝑉
𝑉𝑉𝑖𝑖

> 0

Example:

z

y

x

σx

σy

σz

τzy
τz
x

τyx

τyz

τxy

τx
z

L e c t u r e  2  –  B A S I C  C O N C E P T S



Stress-strain conjugate pairs
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• Work input per unit volume of element

• In term of principal stresses

• In term of triaxial stresses

𝛿𝛿𝛿𝛿 = 𝜎𝜎𝑥𝑥𝑥𝑥′ 𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥 + 𝜎𝜎𝑦𝑦𝑦𝑦′ 𝛿𝛿𝜀𝜀𝑦𝑦𝑦𝑦 + 𝜎𝜎𝑧𝑧𝑧𝑧′ 𝛿𝛿𝜀𝜀𝑧𝑧𝑧𝑧 + 𝜏𝜏𝑦𝑦𝑦𝑦𝛿𝛿𝛾𝛾𝑦𝑦𝑦𝑦 + 𝜏𝜏𝑧𝑧𝑥𝑥𝛿𝛿𝛾𝛾𝑧𝑧𝑥𝑥 + 𝜏𝜏𝑥𝑥𝑥𝑥𝛿𝛿𝛾𝛾𝑥𝑥𝑥𝑥

𝛿𝛿𝛿𝛿 = 𝜎𝜎1′𝛿𝛿𝜀𝜀1 + 𝜎𝜎2′𝛿𝛿𝜀𝜀2 + 𝜎𝜎3′𝛿𝛿𝜀𝜀3

𝛿𝛿𝛿𝛿 = 𝜎𝜎𝑎𝑎′𝛿𝛿𝜀𝜀𝑎𝑎 + 2𝜎𝜎𝑟𝑟′𝛿𝛿𝜀𝜀𝑟𝑟
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Triaxial stress-strain conjugate pairs
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Change in 
volume

Change in 
shape

𝑝𝑝′ =
𝜎𝜎1′ + 𝜎𝜎2′ + 𝜎𝜎3′

3
=
𝜎𝜎′𝑎𝑎 + 2𝜎𝜎′𝑟𝑟

3

𝑞𝑞 = 𝑞𝑞𝑞 = 𝜎𝜎1 − 𝜎𝜎3 = 𝜎𝜎𝑎𝑎 − 𝜎𝜎𝑟𝑟

𝜀𝜀𝑉𝑉 = 𝜀𝜀1 + 𝜀𝜀2 + 𝜀𝜀3 = 𝜀𝜀𝑎𝑎 + 2𝜀𝜀𝑟𝑟

Volumetric strain:

Deviatoric strain:

𝜀𝜀𝑑𝑑 =
2
3

(𝜀𝜀1 − 𝜀𝜀3) =
2
3

(𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑟𝑟)

Deviatoric stress:

Mean effective stress

𝛿𝛿𝛿𝛿 = 𝜎𝜎𝑎𝑎′𝛿𝛿𝜀𝜀𝑎𝑎 + 2𝜎𝜎𝑟𝑟′𝛿𝛿𝜀𝜀𝑟𝑟

𝛿𝛿𝛿𝛿 =
𝜎𝜎𝑎𝑎′ + 2𝜎𝜎𝑟𝑟′ 𝛿𝛿𝜀𝜀𝑎𝑎 + 2𝛿𝛿𝜀𝜀𝑟𝑟

3
+

𝜎𝜎𝑎𝑎′ − 𝜎𝜎𝑟𝑟′ 2 𝛿𝛿𝜀𝜀𝑎𝑎 − 𝛿𝛿𝜀𝜀𝑟𝑟
3

𝛿𝛿𝛿𝛿 = 𝑝𝑝′ 𝛿𝛿𝜀𝜀𝑣𝑣 + 𝑞𝑞 𝛿𝛿𝜀𝜀𝑑𝑑𝛿𝛿𝛿𝛿 = 𝛿𝛿𝑊𝑊𝑣𝑣 + 𝛿𝛿𝑊𝑊𝑞𝑞
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Stress paths
STRESS PATHS OF GEOMECHANICS PROBLEMS
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Stress paths

G e o m e c h a n i c s –  Fa l l  2 0 24 3 0

𝑞𝑞

B’

ESP

A

B

A’

𝑝𝑝𝑤𝑤,0

TSP

𝑝𝑝, 𝑝𝑝′

• The behaviour of an element of soil to a change in the stress state depends on:
Stress path = Successive states of stress to which the soil is subjected

Examples 

ESP (effective stress path): stress path expressed in 
terms of effective stress

TSP (total stress path): stress path expressed in terms of 
total stress

Drained stress path: ∆𝑝𝑝𝑤𝑤 = 0 at the end of the stress 
change, any variation of pore water pressure with 
respect to the initial value takes place;
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Vertical Loading
•Axial compression
•Lateral extension

Lateral Loading
•Axial extension
•Lateral compression

Slip surface

Slope

Water level

Issues:
 Stability of the slope

Stress paths

G e o m e c h a n i c s –  Fa l l  2 0 24 31

Slopes General procedure:

i. selection of some soil elements 
representative for the problem of 
interest

ii. identification of the stress path(s) 
followed by such element(s) in the 
phase of interest

iii. carrying out of laboratory tests to 
reproduce these stress path(s).
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q

Vertical Loading
•Axial compression
•Lateral extension

Issues:
 Settlements (differential)
 Bearing capacity

Building foundation

Shallow foundations

Stress paths
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Lateral Unloading
•Axial compression
•Lateral extension

Issues:
 Stability of the diaphragm
 Earth pressure

Ex
ca

va
tio

n

Earth retaining structure (i.e. diaphragm wall)

Stress paths
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Radial Unloading
•Axial compression
•Radial extension

Issues:
 Tunnel 

convergence
 Stability of the 

excavation face
If before excavation
𝜎𝜎𝜃𝜃𝜃𝜃 = 𝜎𝜎𝑟𝑟𝑟𝑟 = 𝑝𝑝0

After excavation
𝜎𝜎𝜃𝜃𝜃𝜃 =  2𝑝𝑝0 ,𝜎𝜎𝑟𝑟𝑟𝑟 = 0

(Brady and Brown, 2006)

𝑝𝑝0

𝑝𝑝0

𝜃𝜃

𝜎𝜎𝑟𝑟𝑟𝑟

𝜎𝜎𝑟𝑟𝜃𝜃

𝜎𝜎𝜃𝜃𝜃𝜃
After excavation
𝜎𝜎𝜃𝜃𝜃𝜃 =  2𝑝𝑝0 ,𝜎𝜎𝑟𝑟𝑟𝑟 = 0

Axial Unloading
•Axial extension
•Radial 
compression

Tunnel

Stress paths
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Issues:
 Pore pressure development
 Consolidation (time-dependent 

settlements)

Vertical Loading
•Axial compression
•Lateral extension

Trench excavation

Vertical Unloading
•Axial extension
•Lateral compression

Issues:
 Negative pore pressure development
 Consolidation (time-dependent 

settlements)

Embankment construction

Stress paths
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Laboratory testing:
Triaxial tests
STRESS-STRAIN BEHAVIOUR
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D

H

⁄𝐻𝐻 𝐷𝐷 ≅
1
2

𝐷𝐷 = 3.8 𝑐𝑐𝑐𝑐
𝐻𝐻 = 7.6 𝑐𝑐𝑐𝑐

Usually: 

How to reproduce stress paths in laboratory
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Triaxial test
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How to reproduce stress paths in laboratory
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Controlled or Measured

Measured

 𝐹𝐹𝑎𝑎 : Axial force

 𝜎𝜎𝑐𝑐 : Cell pressure

 𝑑𝑑𝑎𝑎 : Axial displacement

 𝑑𝑑𝑟𝑟 : Radial displacement

 𝑝𝑝𝑤𝑤 : Pore water pressure 

 𝑉𝑉𝑤𝑤 : Pore water volume

Computed

 𝑡𝑡 : time

 𝜎𝜎𝑎𝑎 : Axial stress

→ Axial force 𝐹𝐹𝑎𝑎
 𝜎𝜎𝑟𝑟 : Radial stress

→ Cell pressure 𝜎𝜎𝑐𝑐
 𝜀𝜀𝑎𝑎 : Axial strain

→ Axial displacement 𝑑𝑑𝑎𝑎
 𝜀𝜀𝑟𝑟 : Radial strain

→ Radial displacement 𝑑𝑑𝑎𝑎
 𝜀𝜀𝑣𝑣 : Volumetric strain

→ Pore water volume 𝑉𝑉𝑤𝑤

𝝈𝝈𝒄𝒄

𝑭𝑭𝒂𝒂

𝒅𝒅𝒓𝒓
𝒅𝒅𝒂𝒂

𝒑𝒑𝒘𝒘/𝑽𝑽𝒘𝒘𝒑𝒑𝒘𝒘/𝑽𝑽𝒘𝒘
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Type of strain

Volumetric + Distorsion

𝜎𝜎𝑟𝑟 = 𝜎𝜎𝑐𝑐

The axial and radial stress

𝜎𝜎𝑐𝑐

𝜎𝜎𝑟𝑟 = 𝜎𝜎𝑐𝑐

𝜎𝜎𝑐𝑐

∆𝜎𝜎𝑎𝑎

∆𝜎𝜎𝑎𝑎

𝜎𝜎𝑟𝑟,𝑓𝑓

𝜎𝜎𝑎𝑎,𝑓𝑓

How to reproduce stress paths in laboratory

G e o m e c h a n i c s –  Fa l l  2 0 24 3 9

Triaxial test

Failure in shear
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Stress and strain variables for triaxial tests
 Axisymmetric stress state
 The principal directions coincide with the axial and the radial ones 

Mean total stress  𝑝𝑝 = 𝜎𝜎1+𝜎𝜎2+𝜎𝜎3
3

= 𝜎𝜎𝑎𝑎+2𝜎𝜎𝑟𝑟
3

Mean effective stress  𝑝𝑝′ = 𝜎𝜎1′+𝜎𝜎2′+𝜎𝜎3′

3
= 𝜎𝜎𝑎𝑎′+2𝜎𝜎𝑟𝑟′

3

Deviatoric stress  𝑞𝑞 = 𝜎𝜎𝑎𝑎 − 𝜎𝜎𝑟𝑟

Maximum shear stress  𝜏𝜏 = 𝜎𝜎𝑎𝑎−𝜎𝜎𝑟𝑟
2

How to reproduce stress paths in laboratory
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Volumetric strain 𝜀𝜀𝑣𝑣 = 𝜀𝜀1 + 𝜀𝜀2 + 𝜀𝜀3 = 𝜀𝜀𝑎𝑎 + 2𝜀𝜀𝑟𝑟

Deviatoric strain 𝜀𝜀𝑑𝑑 = 2
3

(𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑟𝑟)

σa

σr σr

Soil
Specime

n

x y

z

= σ1

= σ3= σ2
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𝜎𝜎𝑎𝑎

𝜎𝜎𝑟𝑟

Drainage
Water flow

𝑝𝑝𝑤𝑤

𝜎𝜎𝑎𝑎

𝜎𝜎𝑟𝑟

Drainage
Water flow

Valve

Valve

Specimen

DRAINED CONDITION
 Water Flow ALLOWED
 Excess pore water pressure dissipates

UNDRAINED CONDITION
 Water Flow NOT allowed
 Excess pore water pressure build-up

• Long term analysis in low permeable 
geomaterials (clays)

• Almost all analyses in high 
permeable geomaterials (gravels, 
sands)

• Short term analysis in low 
permeable geomaterials (clays)

Drained and Undrained conditions

How to reproduce stress paths in laboratory
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Drained conditions

How to reproduce stress paths in laboratory
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• Drainage valves are open
• The specimen experiences volume changes 

CONTROLLED
• 𝑝𝑝𝑤𝑤
• 𝜀𝜀𝑎𝑎
• 𝜎𝜎𝑟𝑟

𝜀𝜀𝑣𝑣𝑣𝑣𝑣𝑣 ≠ 0

Effective stress path (ESP) and total stress path (TSP) 
are parallel (displaced horizontally)

   ESP=TSP  if 𝑝𝑝𝑤𝑤,0 = 0 

MEASURED
• Δ𝑉𝑉𝑤𝑤
• 𝜎𝜎𝑎𝑎

COMPUTED
• 𝜀𝜀𝑣𝑣𝑣𝑣𝑣𝑣 from Δ𝑉𝑉𝑤𝑤

• 𝜀𝜀𝑟𝑟 = (𝜀𝜀𝑣𝑣𝑣𝑣𝑣𝑣−𝜀𝜀𝑎𝑎)
2

𝜎𝜎𝑎𝑎

𝜎𝜎𝑟𝑟

Drainage
Water flow

𝑝𝑝𝑤𝑤

𝜎𝜎𝑎𝑎

𝜎𝜎𝑟𝑟

Drainage
Water flow

Valve

Valve

Specimen
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Undrained conditions

How to reproduce stress paths in laboratory
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• Drainage valves are closed
• The specimen experiences no volume changes in 

saturated conditions  

CONTROLLED
• 𝜀𝜀𝑎𝑎
• 𝜎𝜎𝑟𝑟
• ∆𝑉𝑉𝑤𝑤 = 0 → 𝜀𝜀𝑣𝑣𝑣𝑣𝑣𝑣 = 0

𝜀𝜀𝑣𝑣𝑣𝑣𝑣𝑣 = 0

Effective stress path (ESP) and total stress path (TSP) 
are NOT parallel

𝜎𝜎𝑎𝑎

𝜎𝜎𝑟𝑟

Drainage
Water flow

𝑝𝑝𝑤𝑤

𝜎𝜎𝑎𝑎

𝜎𝜎𝑟𝑟

Drainage
Water flow

Valve

Valve

Specimen

MEASURED
• 𝑝𝑝𝑤𝑤
• 𝜎𝜎𝑎𝑎

COMPUTED
• 𝐸𝐸𝐸𝐸𝐸𝐸 from 𝑝𝑝𝑤𝑤 and 𝑇𝑇𝑇𝑇𝑃𝑃 

• 𝜀𝜀𝑟𝑟 = − 𝜀𝜀𝑎𝑎
2
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𝜎𝜎𝑎𝑎,0 = 𝜎𝜎𝑟𝑟,0

𝜎𝜎𝑟𝑟,0𝜎𝜎𝑟𝑟,0

𝜎𝜎𝑎𝑎,0

0. Saturation 1. Isotropic compression (IC) 2. Shearing

The pore water pressure is 
increased to saturate the 
specimen. Axial and radial 
stress are increased for 
ensuring positive effective 
stress.  

Axial and radial stress are 
equally increased, the 
specimen is compressed 
isotropically.  

𝑝𝑝𝑤𝑤,0

Axial stress and radial 
stress are changed. The 
specimen is carried to 
failure by shearing 

𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼

𝜎𝜎𝑎𝑎,𝐼𝐼𝐼𝐼

𝑝𝑝𝑤𝑤,𝐼𝐼𝐼𝐼

𝜎𝜎𝑎𝑎,𝐼𝐼𝐼𝐼 = 𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼

𝜎𝜎𝑟𝑟𝜎𝜎𝑟𝑟

𝜎𝜎𝑎𝑎

𝑝𝑝𝑤𝑤

𝜎𝜎𝑎𝑎

Drained (C), or Undrained (U) 

How to reproduce stress paths in laboratory

G e o m e c h a n i c s –  Fa l l  2 0 24 4 4

Drained (C), or Undrained (U) 

Triaxial test: General procedure
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IC

CTC: conventional tx compression

RTC: reduced tx compression

TC: tx compression

CTC

σa σr

RTC TC

CTETERTE

CTE: conventional tx extension

RTE: reduced tx extension

TE: tx extension

σa σr

σa σr

σa σr

σa σr

σa σr

Co
m
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𝜎𝜎𝑎𝑎

𝑝𝑝

𝑞𝑞 𝜎𝜎𝑟𝑟𝜎𝜎𝑟𝑟

𝜎𝜎𝑎𝑎

How to reproduce stress paths in laboratory
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Stress paths for shearing 

Specimen led 
to failure in 
different ways
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1

3

STAGE 1
Isotropic compression (IC)

STAGE 2
Deviatoric loading

A

B (Failure)

𝜎𝜎𝑎𝑎,𝐼𝐼𝐼𝐼 = 𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼

𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼

𝜎𝜎𝑎𝑎,𝐼𝐼𝐼𝐼

𝜎𝜎𝑎𝑎

𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼

𝜎𝜎𝑎𝑎

𝑝𝑝 = 𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼

𝑞𝑞 = 0

𝑝𝑝 =
𝜎𝜎𝑎𝑎 + 2𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼

3
𝑞𝑞 = 𝜎𝜎𝑎𝑎 −𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼

TSP: total
stress
path

𝑞𝑞

𝑝𝑝

How to reproduce stress paths in laboratory
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CTC test : shearing with 𝝈𝝈𝒂𝒂     and 𝝈𝝈𝒓𝒓 -- 
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1

3

A

During shearing (stage 2): o the specimen experiences variation 
in height (H) and diameter (area, A)

o ΔH is measured  εa

o A = V0+∆V
H0+∆H

   σa

𝑞𝑞

𝑝𝑝,𝑝𝑝𝑝

TSP: total stress path

ESP: effective stress path
B

A’

B’

𝑝𝑝′ = 𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼 − 𝑝𝑝𝑤𝑤,0

𝑞𝑞 = 0

𝑝𝑝′ =
𝜎𝜎𝑎𝑎 + 2𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼

3
− 𝑝𝑝𝑤𝑤

𝑞𝑞 = 𝜎𝜎𝑎𝑎 −𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼

𝑝𝑝𝑤𝑤 = 𝑝𝑝𝑤𝑤,0

𝑝𝑝𝑤𝑤,0

𝑝𝑝𝑤𝑤 = 𝑝𝑝𝑤𝑤,0 → ∆𝑝𝑝𝑤𝑤= 0

water flow
ΔV = - ΔVw

How to reproduce stress paths in laboratory
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CTC test : shearing in DRAINED CONDITIONS

  

 𝑝𝑝′ = 𝑝𝑝 if 𝑝𝑝𝑤𝑤,0 = 0

 𝜀𝜀𝑣𝑣𝑣𝑣𝑣𝑣 ≠ 0
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During shearing (stage 2): o the specimen experiences variation 
in height (H) and diameter (area, A) 
but no volume changes

o ΔH is measured  εa

o A = V0+∆V
H0+∆H

   σa

water flow
ΔV = - ΔVw = 0

How to reproduce stress paths in laboratory
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CTC test : shearing in UNDRAINED CONDITIONS

  

 𝑝𝑝′ ≠ 𝑝𝑝

 𝜀𝜀𝑣𝑣𝑣𝑣𝑣𝑣 = 0

1

3

A

𝑞𝑞

𝑝𝑝,𝑝𝑝𝑝

TSP: total stress path

ESP: effective stress path
B

A’

B’

𝑝𝑝′ = 𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼 − 𝑝𝑝𝑤𝑤,0

𝑞𝑞 = 0

𝑝𝑝′ =
𝜎𝜎𝑎𝑎 + 2𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼

3
− 𝑝𝑝𝑤𝑤

𝑞𝑞 = 𝜎𝜎𝑎𝑎 −𝜎𝜎𝑟𝑟,𝐼𝐼𝐼𝐼

𝑝𝑝𝑤𝑤 ≠ 𝑝𝑝𝑤𝑤,0

𝑝𝑝𝑤𝑤,0

𝑝𝑝𝑤𝑤 ≠ 𝑝𝑝𝑤𝑤,0 → ∆𝑝𝑝𝑤𝑤≠ 0
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How to reproduce stress paths in laboratory
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CTC test : shearing in UNDRAINED CONDITIONS

1

3

A

𝑞𝑞

𝑝𝑝,𝑝𝑝𝑝

TSP: total stress path

ESP: effective 
stress path

B

A’

B’
𝑝𝑝𝑤𝑤 ≠ 𝑝𝑝𝑤𝑤,0

𝑝𝑝𝑤𝑤,0

∆pw , for a given total stress change, mainly 
depends on the compressibility of the solid 
skeleton and of the fluids within the specimen. 

+ +

=>

Total stress is modified with changes in principal stresses. The 
application of the total stresses can be considered as taking 
place in two stages

The soil element is originally in equilibrium 
under a stress state (p) 
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How to reproduce stress paths in laboratory
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The change in pwp occurring under changes in total 
stresses must be known in problems involving 
undrained conditions.
Skempton (1954) derives the following expression:

A and B are the pore-pressure coefficients, 
measured in the lab for changes in principal total 
stresses occurring in the problem under analysis.

B accounts for isotropic stress changes.

A accounts for deviator loadings. Values reported by Lambe and Whitman (1969)

CTC test : shearing in UNDRAINED CONDITIONS
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How to reproduce stress paths in laboratory
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To do @ home
Assume a fully saturated and ideal-elastic geomaterial. During the shearing phase of a CTC triaxial test 
(∆σ3 = 0) in undrained conditions, how will evolve the pore pressure (∆pw) with respect to the axial 
stress ∆σ1 ? Illustrate in a q – p’ (p) plane

Hint: use Skempton’s formula
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Stress paths
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Practical example of the path reproduced by a CTC test
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Stress paths
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Example of outputs of a CTC test –DRAINED CONDITION with 𝑝𝑝𝑤𝑤,0 = 0
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Example of outputs of a CTC test –UNDRAINED CONDITION with 𝑝𝑝𝑤𝑤,0 = 0
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After excavation
𝜎𝜎𝜃𝜃𝜃𝜃 =  2𝑝𝑝0 ,𝜎𝜎𝑟𝑟𝑟𝑟 = 0

𝜎𝜎𝑟𝑟𝑟𝑟

𝜎𝜎𝑟𝑟𝜃𝜃

𝜎𝜎𝜃𝜃𝜃𝜃
Practical example of the path reproduced by a RTE test
RTE test : shearing with 𝝈𝝈𝒂𝒂     and 𝝈𝝈𝒓𝒓 -- 
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Conclusions
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• Effective stress – a tool to go from multi-phase description to single phase 
continuum description

• Stress-path strictly depends on the problem under consideration
• Reproduction of stress path using triaxial test as a general framework
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Thank you for your attention
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